Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction

نویسندگان

  • Gang Wu
  • Mark Nelson
  • Shuguo Ma
  • Hui Meng
  • Guofeng Cui
  • Pei Kang Shen
چکیده

Nitrogen-doped onion-like carbon-rich materials were synthesized by heat treatment of a ‘‘hybrid’’ containing hexamethylene diamine complex in the presence of Co and Fe species while preparing non-precious metal electrocatalyst for oxygen-reduction. As demonstrated by electrochemical rotating disk electrode and fuel cell tests, the binary CoFe-based catalyst containing graphitized onion-like carbon nanostructures provides for improved performance relative to the single Fe-based catalyst in which no such carbon structure was observed. In the binary catalysts, variation of the ratios of Co to Fe and the total metal loading during the synthesis leads to a markedly different activity and four-electron selectivity for oxygen reduction. The optimized binary catalyst was studied in fuel cell lifetime tests using both constant current and voltage models, showing a good combination of activity and durability. Possible reasons for the improved performance of the CoFe-based binary catalyst are discussed. The graphitized onion-like carbon structure exclusively derived from Co in this work may be providing a robust matrix to host non-precious metal active sites, which would prevent water flooding of them, and increase the resistance to oxidative attack in the oxygen cathode, thereby leading to an improvement in performance

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction

Nanostructured carbon-based materials, such as nitrogen-doped carbon nanotube arrays, Co3O4/nitrogen-doped graphene hybrids and carbon nanotube-graphene complexes have shown respectable oxygen reduction reaction activity in alkaline media. Although certainly promising, the performance of these materials does not yet warrant implementation in the energy conversion/storage devices utilizing basic...

متن کامل

Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

2D nitrogen-doped mesoporous carbon (NMC) is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR). The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates-viz. graphene oxide and triblock copolymer F12...

متن کامل

Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials

Low temperature fuel cells (LTFCs) are considered as clean energy conversion systems and expected to help address our society energy and environmental problems. Up-to-date, oxygen reduction reaction (ORR) is one of the main hindering factors for the commercialization of LTFCs, because of its slow kinetics and high overpotential, causing major voltage loss and short-term stability. To provide en...

متن کامل

Carbon nanocomposite catalysts for oxygen reduction and evolution reactions_ From nitrogen doping to transition-metal addition

ticle as: G. Wu, et n-metal addition, Abstract Oxygen reduction reaction (ORR) and evolution reaction (OER) are one pair of the most important electrochemical reactions associated with energy conversion and storage technologies, such as fuel cells, metal–air batteries, and water electrolyzers. However, the sluggish ORR and OER requires a significantly large quantity of precious metals (e.g., Pt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011